Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «Омский государственный технический университет»

Кафедра «Нефтегазовое дело, стандартизация и метрология»

ДОМАШНЕЕ ЗАДАНИЕ

по дисциплине «Гидравлика и нефтегазовая гидромеханика»

Вариант № 4

Выполнил студент группы: ВНД-204			
Коробейников Илья Вадимович (фамилия, имя, отчество студента)			
(дата, подпись)			
Проверил: Доц., К.Н.			
(ученая степень, звание)			
Кожушко А.А.			
(фамилия, имя, отчество руководителя)			
(дата, подпись)			

Залача 1

Определить дебит дренажной галереи шириной В и построить график распределения давления P(x), если известно давление на контуре питания P_k , давление на галерее P_r , коэффициент проницаемости пласта k, вязкость жидкости μ , мощность пласта k, расстояние от контура питания до галереи k. Движение жидкости напорное, подчиняется закону Дарси.

Рассмотреть фильтрацию:

- 1) несжимаемой жидкости.
- 2) совершенного газа.

Исходные данные:

Схема дренажной галереи представлена на рисунке 1.

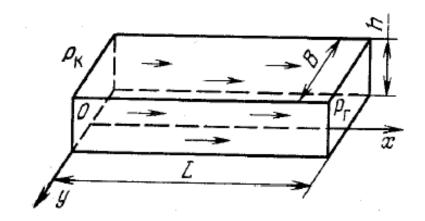


Рисунок 1 – Схема дренажной галереи

$$P_{amm} = 0,1013 \cdot 10^6 \, \Pi a;$$

 $B = 100 \, m;$

Здесь и далее N-номер варианта.

$$h = \left| 10 + (-1)^{N} \cdot \frac{N}{10} \right| = \left| 10 + (-1)^{4} \cdot \frac{4}{10} \right| = 10, 4 \text{ m};$$

$$L = \left| 3000 + (-1)^{N} \cdot 40 \cdot N \right| = \left| 3000 + (-1)^{4} \cdot 40 \cdot 4 \right| = 3160 \text{ m};$$

$$P_{k} = \left[20 + (-1)^{N} \cdot \frac{N}{10} \right] \cdot 10^{6} = \left[20 + (-1)^{4} \cdot \frac{4}{10} \right] \cdot 10^{6} = 2, 04 \cdot 10^{7} \, \Pi a;$$

$$P_{e} = \left| \left[2 + (-1)^{N} \cdot \frac{N}{50} \right] \cdot 10^{6} \right| = \left| \left[2 + (-1)^{4} \cdot \frac{4}{50} \right] \cdot 10^{6} \right| = 2, 08 \cdot 10^{6} \, \Pi a;$$

$$k = \left| \left[2 + (-1)^{N} \cdot \frac{N}{50} \right] \cdot 10^{-12} \right| = \left| \left[2 + (-1)^{4} \cdot \frac{4}{50} \right] \cdot 10^{-12} \right| = 2, 08 \cdot 10^{-12} \, \text{m}^{2}.$$

Для несжимаемой жидкости:

$$\rho_{\infty} = 800 + (-1)^{N} \cdot N = 800 + (-1)^{4} \cdot 4 = 804 \frac{\kappa 2}{M^{3}};$$

$$\mu_{\infty} = \left(1 + \frac{N}{25}\right) \cdot 10^{-3} = \left(1 + \frac{4}{25}\right) \cdot 10^{-3} = 1, 16 \cdot 10^{-3} \, \text{Ma} \cdot c.$$

Для совершенного газа:

$$\begin{split} & \rho_{amm} \! = \! 1 \! + \! (-1)^{\!N} \! \cdot \! \frac{N}{1000} \! = \! 1 \! + \! (-1)^4 \! \cdot \! \frac{4}{1000} \! = \! 1,\! 004 \frac{\kappa \mathcal{E}}{M^3}; \\ & \mu_{\scriptscriptstyle \mathcal{E}} \! = \! \left(1 \! + \! \frac{N}{25} \right) \! \cdot \! 10^{-5} \! = \! \left(1 \! + \! \frac{4}{25} \right) \! \cdot \! 10^{-5} \! = \! 1 \; , 16 \! \cdot \! 10^{-5} \; \Pi a \cdot \! c \; . \end{split}$$

Определить: Q.

Решение:

а) несжимаемая жидкость

 $Q = w \cdot F$ – объёмный расход;

$$w = \frac{k}{\mu} \cdot \left(\frac{P_k - P_z}{L} \right) -$$
закон фильтрации Дарси;
$$F = B \cdot h;$$

$$Q = \frac{k}{\mu_{\infty}} \cdot \left(\frac{P_k - P_z}{L}\right) \cdot B \cdot h;$$

$$Q = \frac{2.08 \cdot 10^{-12}}{1.16 \cdot 10^{-3}} \cdot \left(\frac{2.04 \cdot 10^7 - 2.08 \cdot 10^6}{3160}\right) \cdot 100 \cdot 10.4 = 0.01 \frac{M^3}{c};$$

Рассчитаем значения давления жидкости в пласте:

$$L=0; 0, 2 \cdot L; \dots L;$$

$$P=P_{k} - \frac{P_{k} - P_{z}}{L} \cdot X$$

$$P_{1} = \left(P_{k} - \frac{P_{k} - P_{z}}{L} \cdot L\right) \cdot 10^{-6} = \left(2, 04 \cdot 10^{7} - \frac{2, 04 \cdot 10^{7} - 2, 08 \cdot 10^{6}}{3160} \cdot 0\right) \cdot 10^{-6} = \mathcal{E}$$

$$\mathcal{E}_{20}, 40 \text{ MMa}.$$

Остальные расчетные значения представим в таблице 1. График распределения давления P(x) для несжимаемой жидкости представлен на рисунке 2.

Таблица 1 - Значения давления жидкости в пласте

L, км	Р, МПа
0	20,40
0,63	16,74
1,26	13,07
1,90	9,41
2,53	5,74
3,16	2,08

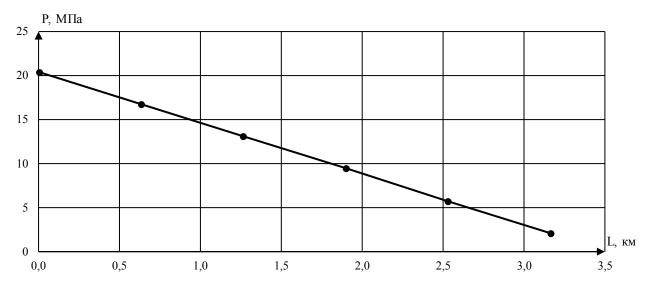


Рисунок 2 – График распределения давления Р(х) для несжимаемой жидкости

б) совершенный газ:

 $Q_m = \rho \cdot Q$ — массовый метод;

$$\rho = \rho_{amm} \cdot \frac{P}{P_{amm}};$$

$$Q = w \cdot F$$
;

$$Q_{m} = \rho_{amm} \cdot \frac{P}{P_{amm}} \cdot w \cdot F ;$$

$$Q_{m} = \frac{\rho_{amm}}{P_{amm}} \cdot \frac{k}{\mu_{z}} \cdot \left(\frac{P_{k}^{2} - P_{z}^{2}}{2 \cdot L}\right) \cdot B \cdot h;$$

$$Q_{m} = \frac{1,004}{101300} \cdot \frac{2,08 \cdot 10^{-12}}{1,16 \cdot 10^{-5}} \cdot \left(\frac{\left(2,04 \cdot 10^{7}\right)^{2} - \left(2,08 \cdot 10^{6}\right)^{2}}{2 \cdot 3160} \right) \cdot 100 \cdot 10,4 = 3$$

$$\frac{119,96}{c}$$
.

Рассчитаем значения давления газа в пласте:

$$\begin{split} P &= \sqrt{{P_k}^2 - \frac{{P_k}^2 - {P_z}^2}{L}} \cdot X \; ; \\ P_1 &= \left(\sqrt{{P_k}^2 - \frac{{P_k}^2 - {P_z}^2}{L}} \cdot L \right) \cdot 10^{-6} = \mathcal{L} \\ \mathcal{L} &= \left(\sqrt{{(2,04 \cdot 10^7)^2 - \frac{{(2,04 \cdot 10^7)^2 - {(2,08 \cdot 10^6)^2}}}{3160}} \cdot 0 \right) \cdot 10^{-6} = 20,40 \; M\Pi a \; . \end{split}$$

Остальные расчетные значения представим в таблице 2. График распределения давления P(x) для совершенного газа представлен на рисунке 3.

Таблица 2 - Значения давления газа в пласте

L, км	Р, МПа
0	20,40
0,63	18,27
1,26	15,86
1,90	13,00
2,53	9,31
3,16	2,08

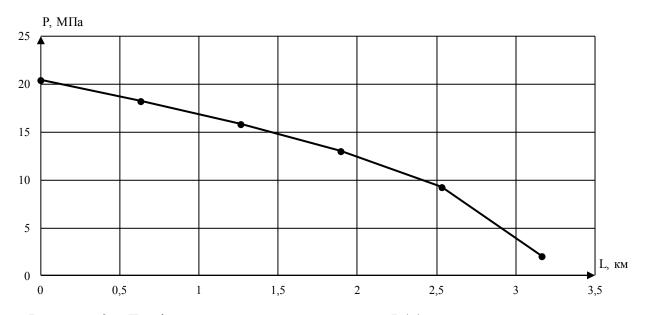


Рисунок 3 — График распределения давления P(x) для совершенного газа

Вывод:

В данной работе мы рассмотрели фильтрацию несжимаемой жидкости и совершенного газа.

Определили дебит дренажной галереи:

- а) несжимаемая жидкость: Q = 0, $01 \frac{M^3}{c} = 934$, $09 \frac{M^3}{cym}$;
- б) совершенный газ: $Q_m = 119,96 \frac{\kappa z}{c} = 1,04 \cdot 10^4 \frac{m}{cym}$.

Построили графики распределения давления P(x) для несжимаемой жидкости и совершенного газа. Графики представлены на рисунках 2 и 3.

Залача 2

Определить дебит добывающей скважины и построить графики распределения давления и скорости фильтрации, если известно давление на контуре питания P_k , давление на скважине P_c , коэффициент проницаемости пласта k, вязкость жидкости μ , мощность пласта h, радиус скважины r_c , радиус контура питания R_k . Движение жидкости напорное, подчиняется закону Дарси. Рассмотреть фильтрацию:

- 1) несжимаемой жидкости.
- 2) совершенного газа.

Исходные данные:

Схема цилиндрического пласта представлена на рисунке 1.

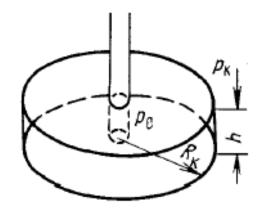


Рисунок 1 – Схема цилиндрического пласта

$$P_{amm} = 0,1013 \cdot 10^6 \, \Pi a;$$

 $B = 100 \, m;$

Здесь и далее N-номер варианта.

$$h = \left| 10 + (-1)^{N} \cdot \frac{N}{10} \right| = \left| 10 + (-1)^{4} \cdot \frac{4}{10} \right| = 10, 4 \text{ m};$$

$$R_{k} = \left| 600 + (-1)^{N} \cdot 10 \cdot N \right| = \left| 600 + (-1)^{4} \cdot 10 \cdot 4 \right| = 640 \text{ m};$$

$$r_{c} = 0, 1 + \frac{N}{100} = 0, 1 + \frac{4}{100} = 0, 14 \text{ m};$$

$$P_{c} = \left[2 + (-1)^{N} \cdot \frac{N}{50} \right] \cdot 10^{6} = \left[2 + (-1)^{4} \cdot \frac{4}{50} \right] \cdot 10^{6} = 2, 08 \cdot 10^{6} \text{ Ha};$$

$$P_{k} = \left[20 + (-1)^{N} \cdot \frac{N}{10} \right] \cdot 10^{6} = \left[20 + (-1)^{4} \cdot \frac{4}{10} \right] \cdot 10^{6} = 2, 04 \cdot 10^{7} \text{ Ha};$$

$$k = \left| \left[2 + (-1)^{N} \cdot \frac{N}{50} \right] \cdot 10^{-12} \right| = \left| \left[2 + (-1)^{4} \cdot \frac{4}{50} \right] \cdot 10^{-12} \right| = 2, 08 \cdot 10^{-12} \text{ m}^{2}.$$

Для несжимаемой жидкости:

$$\rho_{\infty} = 800 + (-1)^{N} \cdot N = 800 + (-1)^{4} \cdot 4 = 804 \frac{\kappa z}{M^{3}};$$

$$\mu_{\infty} = \left(1 + \frac{N}{25}\right) \cdot 10^{-3} = \left(1 + \frac{4}{25}\right) \cdot 10^{-3} = 1, 16 \cdot 10^{-3} \Pi a \cdot c.$$

Для совершенного газа:

$$\begin{split} & \rho_{amm} \! = \! 1 \! + \! (-1)^{\!N} \! \cdot \! \frac{N}{1000} \! = \! 1 \! + \! (-1)^4 \! \cdot \! \frac{4}{1000} \! = \! 1,\! 004 \frac{\kappa \mathcal{E}}{M^3}; \\ & \mu_{\scriptscriptstyle \mathcal{E}} \! = \! \left(1 \! + \! \frac{N}{25} \right) \! \cdot \! 10^{-5} \! = \! \left(1 \! + \! \frac{4}{25} \right) \! \cdot \! 10^{-5} \! = \! 1 \; , 16 \! \cdot \! 10^{-5} \; \Pi a \cdot \! c \; . \end{split}$$

Определить: Q_{H} , Q_{ε} .

Решение:

а) несжимаемая жидкость

$$Q_{\scriptscriptstyle H} = \frac{2 \cdot \pi \cdot h \cdot k \cdot (P_{\scriptscriptstyle k} - P_{\scriptscriptstyle c})}{\mu_{\scriptscriptstyle \mathcal{M}} \cdot \ln \left(\frac{R_{\scriptscriptstyle k}}{r_{\scriptscriptstyle c}}\right)} - \text{формула Дюпюи;}$$

$$Q_{H} = \frac{2 \cdot 3, 14 \cdot 10, 4 \cdot 2, 08 \cdot 10^{-12} \cdot \left(2, 04 \cdot 10^{7} - 2, 08 \cdot 10^{6}\right)}{1, 04 \cdot 10^{-3} \cdot \ln\left(\frac{640}{0, 14}\right)} = 0, 25 \frac{M^{3}}{c};$$

Рассчитаем значения давления и скорости фильтрации жидкости:

$$r = r_c$$
; 0, 1 $\cdot \frac{R_k}{13}$; 0, 25 $\cdot \frac{R_k}{13}$; 0, 5 $\cdot \frac{R_k}{13}$; ... L;

$$w(r) = \frac{Q_{\scriptscriptstyle H}}{2 \cdot \pi \cdot r \cdot h}$$

$$w_1 = \frac{Q_H}{2 \cdot \pi \cdot r_1 \cdot h} \cdot 10^6 = \frac{0.25}{2 \cdot 3.14 \cdot 0.14 \cdot 10.4} \cdot 10^6 = 27841,96 \frac{MKM}{c};$$

$$P(r) = P_k - \frac{(P_k - P_c)}{\ln\left(\frac{R_k}{r_c}\right)} \cdot \ln\left(\frac{R_k}{r}\right)$$

$$P_{1} = P_{k} - \frac{\left(P_{k} - P_{c}\right)}{\ln\left(\frac{R_{k}}{r_{c}}\right)} \cdot \ln\left(\frac{R_{k}}{r_{1}}\right) = \mathcal{L}$$

$$\left| 2,04 \cdot 10^7 - \frac{\left(2,04 \cdot 10^7 - 2,08 \cdot 10^6\right)}{\ln\left(\frac{640}{0,14}\right)} \cdot \ln\left(\frac{640}{0,14}\right) \right| \cdot 10^{-6} = 2,08 \, M\Pi a.$$

Остальные расчетные значения представим в таблице 1. График распределения давления P(r) для несжимаемой жидкости представлен на рисунке 2. График распределения скорости фильтрации w(r) для несжимаемой жидкости представлен на рисунке 3.

Таблица 1 - Значения давления и скорости фильтрации жидкости

r, M	P(r), MПа	W(r), мкм/с
0,14	2,08	27841,96
6,4	10,39	609,04
16	12,38	243,62
32	13,89	121,81
64	15,39	60,90
128	16,90	30,45
192	17,78	20,30
256	18,41	15,23
320	18,89	12,18
384	19,29	10,15
448	19,62	8,70
512	19,91	7,61
576	20,17	6,77
640	20,40	6,09

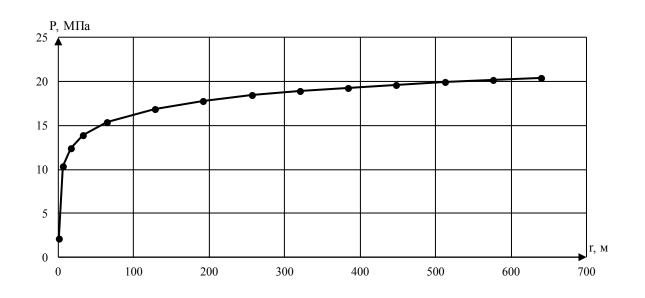


Рисунок 2 - График распределения давления Р(r) для несжимаемой жидкости

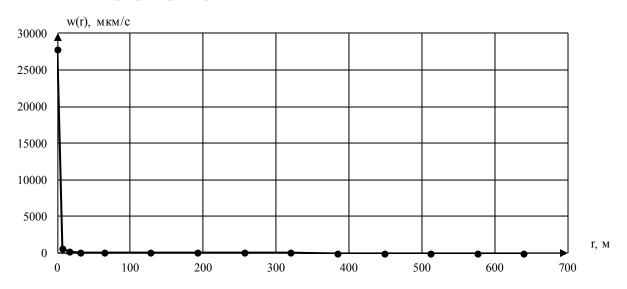


Рисунок 3 - График распределения скорости фильтрации w(r) для несжимаемой жидкости

б) совершенный газ

$$Q_{m} = \frac{\pi \cdot h \cdot k \cdot \rho_{amm} \cdot \left(P_{k}^{2} - P_{c}^{2}\right)}{\mu_{z} \cdot P_{amm} \cdot \ln\left(\frac{R_{k}}{r_{c}}\right)}$$

$$Q_{m} = \frac{3,14 \cdot 10,4 \cdot 2,08 \cdot 10^{-12} \cdot 1,004 \cdot \left(\left(2,04 \cdot 10^{7}\right)^{2} - \left(2,08 \cdot 10^{6}\right)^{2}\right)}{1,16 \cdot 10^{-5} \cdot 0,1013 \cdot 10^{6} \cdot \ln\left(\frac{640}{0,14}\right)} = 2,84 \cdot 10^{3} \frac{\kappa z}{c};$$

Рассчитаем значения давления и скорости фильтрации жидкости:

$$P(r) = \sqrt{P_k^2 - \frac{\left(P_k^2 - P_c^2\right)}{\ln\left(\frac{R_k}{r_c}\right)} \cdot \ln\left(\frac{R_k}{r}\right)};$$

$$P_{1} = \sqrt{P_{k}^{2} - \frac{(P_{k}^{2} - P_{c}^{2})}{\ln\left(\frac{R_{k}}{r_{c}}\right)} \cdot \ln\left(\frac{R_{k}}{r_{1}}\right)} \cdot 10^{-6} = \mathcal{L}$$

$$\frac{1}{640} \left(\left(2,04 \cdot 10^{7} \right)^{2} - \frac{\left(\left(2,04 \cdot 10^{7} \right)^{2} - \left(2,08 \cdot 10^{6} \right)^{2} \right)}{\ln \left(\frac{640}{0,14} \right)} \cdot \ln \left(\frac{640}{0,14} \right) \right) \cdot 10^{-6} = 2,08 \, M\Pi a;$$

$$w(r) = \frac{Q_{\scriptscriptstyle m}}{2 \cdot \pi \cdot r \cdot h \cdot \rho}; \rho = \frac{\rho_{\scriptscriptstyle amm} \cdot P}{P_{\scriptscriptstyle amm}};$$

$$\begin{split} w(r) &= \frac{Q_{m} \cdot P_{amm}}{2 \cdot \pi \cdot r \cdot h \cdot \rho_{amm} \cdot P} \\ w_{1} &= \frac{Q_{m} \cdot P_{amm}}{2 \cdot \pi \cdot r_{1} \cdot h \cdot \rho_{amm} \cdot P_{1}} \cdot 10^{-6} = \frac{2,84 \cdot 10^{3} \cdot 0,1013 \cdot 10^{6}}{2 \cdot 3,14 \cdot 0,14 \cdot 10,4 \cdot 1,004 \cdot 2,08} \cdot 10^{-6} = \mathcal{E} \\ \mathcal{E}_{15},05 &= \frac{M \mathcal{K} M}{c}; \end{split}$$

Остальные расчетные значения представим в таблице 2. График распределения давления P(r) для совершенного газа представлен на рисунке 4. График распределения скорости фильтрации w(r) для совершенного газа представлен на рисунке 5.

Таблица 2 - Значения давления газа в пласте

r, M	P(r), MПа	W(r), мкм/с
0,14	2,08	15,04537
6,4	13,82	0,32912
16	15,36	0,13165
32	16,42	0,06582
64	17,43	0,03291
128	18,37	0,01646
192	18,90	0,01097
256	19,27	0,00823
320	19,55	0,00658
384	19,78	0,00549
448	19,97	0,00470
512	20,13	0,00411
576	20,27	0,00366
640	20,40	0,00329

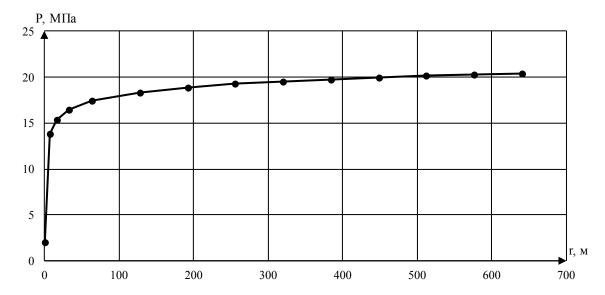


Рисунок 4 – График распределения давления Р(r) для совершенного газа

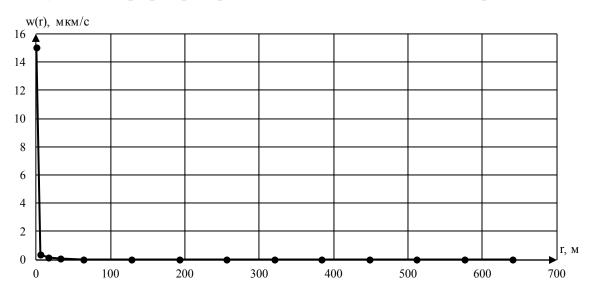


Рисунок 5 — График распределения скорости фильтрации w(r) для совершенного газа

Вывод:

В данной работе мы рассмотрели фильтрацию несжимаемой жидкости и совершенного газа.

Определили дебит добывающей скважины:

- а) несжимаемая жидкость: Q = 0, $25 \frac{M^3}{c} = 2$, $2 \cdot 10^4 \frac{M^3}{cym}$;
- б) совершенный газ: $Q_m = 2,84 \cdot 10^3 \frac{\kappa z}{c} = 2,45 \cdot 10^5 \frac{m}{cym}$.

Построили графики распределения давления P(x) для несжимаемой жидкости и совершенного газа. Графики представлены на рисунках 2-5.

Задача 3

При прямолинейно-параллельной фильтрации давление на контуре питания P_K , давление на галерее P_r . Пласт состоит из трех горизонтальных пропластков мощностью h_i ($h_1=0,3h,\ h_2=0,4h,\ h_3=0,3h$) и коэффициентами проницаемости k_i ($k_1=k,\ k_2=2k,\ k_3=1,5k$). Определить дебит и средний коэффициент проницаемости пласта дренажной галереи шириной В. Построить график распределения давления P(x). Вязкость жидкости μ , мощность пласта h, расстояние от контура питания до галереи L. Движение жидкости напорное, подчиняется закону Дарси. Рассмотреть фильтрацию:

- 1) несжимаемой жидкости.
- 2) совершенного газа.

Исходные данные:

Схема дренажной галереи представлена на рисунке 1. Вертикальное сечение и линия распределения давления в пласте представлено на рисунке 2.

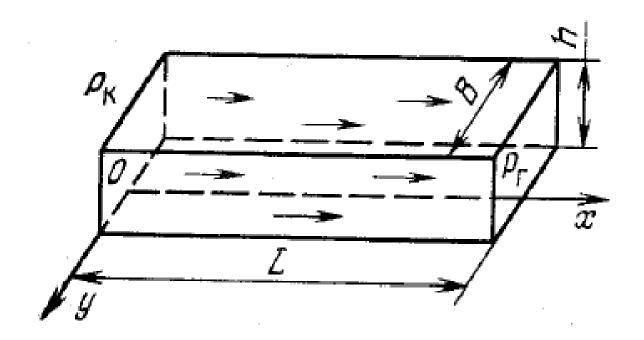


Рисунок 1 – Схема дренажной галереи

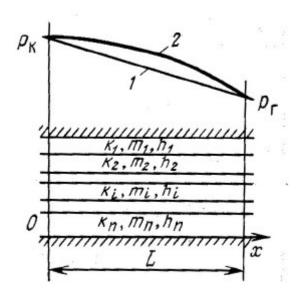


Рисунок 2 - Вертикальное сечение и линия распределения давления в пласте: 1 - распределение давления для жидкости; 2 - распределение давления для газа.

$$P_{amm} = 0,1013 \cdot 10^6 \, \Pi a;$$

$$B = 100 \, M$$
;

Здесь и далее N-номер варианта.

$$h = \left| 10 + (-1)^N \cdot \frac{N}{10} \right| = \left| 10 + (-1)^4 \cdot \frac{4}{10} \right| = 10, 4 \,\text{m};$$

$$L = |3000 + (-1)^N \cdot 40 \cdot N| = |3000 + (-1)^4 \cdot 40 \cdot 4| = 3160 \,\text{M};$$

$$P_k = \left[20 + (-1)^N \cdot \frac{N}{10}\right] \cdot 10^6 = \left[20 + (-1)^4 \cdot \frac{4}{10}\right] \cdot 10^6 = 2,04 \cdot 10^7 \, \Pi a;$$

$$P_{e} = \left| \left[2 + (-1)^{N} \cdot \frac{N}{50} \right] \cdot 10^{6} \right| = \left| \left[2 + (-1)^{4} \cdot \frac{4}{50} \right] \cdot 10^{6} \right| = 2,08 \cdot 10^{6} \, \Pi a;$$

$$k = \left| \left[2 + (-1)^N \cdot \frac{N}{50} \right] \cdot 10^{-12} \right| = \left| \left[2 + (-1)^4 \cdot \frac{4}{50} \right] \cdot 10^{-12} \right| = 2,08 \cdot 10^{-12} \, \text{m}^2.$$

Для несжимаемой жидкости:

$$\rho_{\infty} = 800 + (-1)^{N} \cdot N = 800 + (-1)^{4} \cdot 4 = 804 \frac{\kappa z}{M^{3}};$$

$$\mu_{\infty} = \left(1 + \frac{N}{25}\right) \cdot 10^{-3} = \left(1 + \frac{4}{25}\right) \cdot 10^{-3} = 1, 16 \cdot 10^{-3} \, \Pi a \cdot c.$$

Для совершенного газа:

$$\rho_{amm} = 1 + (-1)^{N} \cdot \frac{N}{1000} = 1 + (-1)^{4} \cdot \frac{4}{1000} = 1,004 \frac{\kappa 2}{m^{3}};$$

$$\mu_{e} = \left(1 + \frac{N}{25}\right) \cdot 10^{-5} = \left(1 + \frac{4}{25}\right) \cdot 10^{-5} = 1$$
, $16 \cdot 10^{-5} \Pi a \cdot c$.

$$k_1 = k = 2,08 \cdot 10^{-12} \text{ m}^2$$
;

$$k_2 = 2 \cdot k = 2 \cdot 2$$
, $08 \cdot 10^{-12} = 4$, $16 \cdot 10^{-12} \, \text{m}^2$;

$$k_3 = 1$$
, $5 \cdot k = 1$, $5 \cdot 2$, $08 \cdot 10^{-12} = 3$, $12 \cdot 10^{-12} \, \text{m}^2$;

$$h_1 = 0$$
, $3 \cdot h = 0$, $3 \cdot 10$, $4 = 3$, $12 M$.

$$h_2 = 0$$
, $4 \cdot h = 0$, $4 \cdot 10$, $4 = 4$, $16 M$;

$$h_3 = 0$$
, $3 \cdot h = 0$, $3 \cdot 10$, $4 = 3$, $12 M$.

Определить: $Q_{\scriptscriptstyle H}$, $Q_{\scriptscriptstyle c}$, $k_{\scriptscriptstyle cp}$.

Решение:

а) несжимаемая жидкость

$$Q = Q_1 + Q_2 + Q_3 = \frac{B \cdot (P_k - P_z)}{u \cdot L} \cdot (h_1 \cdot k_1 + h_2 \cdot k_2 + h_3 \cdot k_3) = 0$$

$$\dot{c} \frac{B \cdot h \cdot k_{cp}}{\mu} \cdot \left(\frac{P_k - P_c}{L} \right);$$

$$h \cdot k_{cp} = h_1 \cdot k_1 + h_2 \cdot k_2 + h_3 \cdot k_3$$

$$k_{cp} = \left[\sum_{i=1}^{3} h_i \cdot k_i\right] \div \left[\sum_{i=1}^{3} h_i\right];$$

$$k_{cp} = \frac{h_1 \cdot k_1 + h_2 \cdot k_2 + h_3 \cdot k_3}{h_1 + h_2 + h_3};$$

$$k_{cp} = \frac{3,12 \cdot 2,08 \cdot 10^{-12} + 4,16 \cdot 4,16 \cdot 10^{-12} + 3,12 \cdot 3,12 \cdot 10^{-12}}{3,12 + 4,16 + 3,12} = \dot{c}$$

$$3,22 \cdot 10^{-12} M^2$$
;

$$Q = \frac{B \cdot h \cdot k_{cp}}{\mu_{sc}} \cdot \left(\frac{P_k - P_z}{L} \right);$$

$$Q = \frac{100 \cdot 10, 4 \cdot 3, 22 \cdot 10^{-12}}{1, 16 \cdot 10^{-3}} \cdot \left(\frac{2, 04 \cdot 10^{7} - 2, 08 \cdot 10^{6}}{3160}\right) = 0, 02 \frac{M^{3}}{c};$$

Рассчитаем значения давления жидкости в пласте:

$$L=0;0,2\cdot L; \cdots L;$$

$$P = P_{k} - \frac{P_{k} - P_{z}}{L} \cdot X$$

$$P_{1} = \left(P_{k} - \frac{P_{k} - P_{z}}{L} \cdot L\right) \cdot 10^{-6} = \left(2,04 \cdot 10^{7} - \frac{2,04 \cdot 10^{7} - 2,08 \cdot 10^{6}}{3160} \cdot 0\right) \cdot 10^{-6} = \lambda$$

$$20,40 \text{ M}\Pi a.$$

Остальные расчетные значения представим в таблице 1. График распределения давления P(x) для несжимаемой жидкости представлен на рисунке 3.

Таблица 1 - Значения давления жидкости в пласте

L, км	Р, МПа
0	20,40
0,63	16,74
1,26	13,07
1,90	9,41
2,53	5,74
3,16	2,08

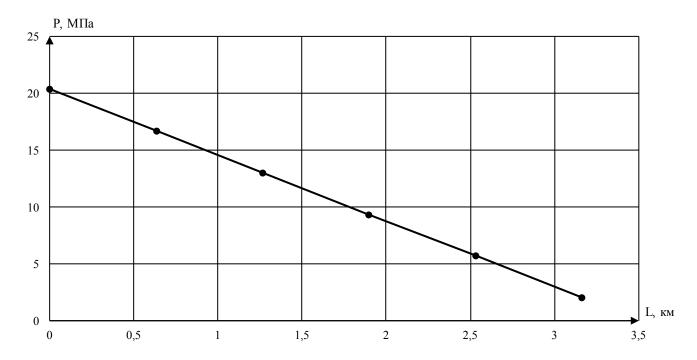


Рисунок 3 — График распределения давления P(x) для несжимаемой жидкости *б) совершенный газ:*

$$Q_{m} = Q_{m1} + Q_{m2} + Q_{m3} = \frac{\rho_{amm} \cdot B \cdot \left(P_{k}^{2} - P_{z}^{2}\right)}{2 \cdot P_{amm} \cdot \mu \cdot L} \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right) = \lambda \cdot \left(h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}\right)$$

$$\frac{\partial \frac{\rho_{amm} \cdot B \cdot h \cdot k_{cp}}{2 \cdot P_{amm} \cdot \mu_{e}} \cdot \left(\frac{P_{k}^{2} - P_{e}^{2}}{L}\right);}{2 \cdot P_{amm} \cdot \mu_{e}};$$

$$Q_{m} = \frac{\rho_{amm} \cdot B \cdot h \cdot k_{cp}}{2 \cdot P_{amm} \cdot \mu_{e}} \cdot \left(\frac{P_{k}^{2} - P_{e}^{2}}{L}\right);$$

$$Q_{m} = \frac{1,004 \cdot 100 \cdot 10, 4 \cdot 3, 22 \cdot 10^{-12}}{2 \cdot 0.1013 \cdot 10^{6} \cdot 1, 16 \cdot 10^{-5}} \cdot \left(\frac{(2,04 \cdot 10^{7})^{2} - (2,08 \cdot 10^{6})^{2}}{3160}\right) = 186,68 \frac{M^{3}}{c}.$$

Рассчитаем значения давления газа в пласте:

$$\begin{split} P &= \sqrt{{P_k}^2 - \frac{{P_k}^2 - {P_\varepsilon}^2}{L}} \cdot X \; ; \\ P_1 &= \left(\sqrt{{P_k}^2 - \frac{{P_k}^2 - {P_\varepsilon}^2}{L}} \cdot L \right) \cdot 10^{-6} = \mathcal{L} \\ \mathcal{L} &= \left(\sqrt{{(2,04 \cdot 10^7)^2 - \frac{{(2,04 \cdot 10^7)^2 - {(2,08 \cdot 10^6)^2}}}{3160}} \cdot 0 \right) \cdot 10^{-6} = 20,40 \; M\Pi a \; . \end{split}$$

Остальные расчетные значения представим в таблице 2. График распределения давления P(x) для совершенного газа представлен на рисунке 4.

Таблица 2 - Значения давления газа в пласте

L, км	Р, МПа
0	20,40
0,63	18,27
1,26	15,86
1,90	13,00
2,53	9,31
3,16	2,08

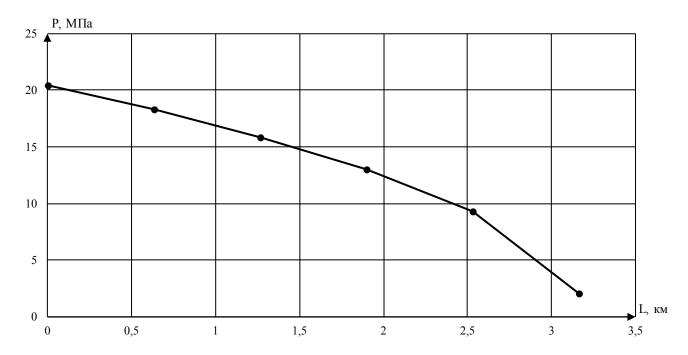


Рисунок 4 – График распределения давления Р(х) для совершенного газа

Вывод:

В данной работе мы рассмотрели прямолинейно-параллельную фильтрацию несжимаемой жидкости и совершенного газа. Определили дебит пласта дренажной галереи:

- а) несжимаемая жидкость: Q = 0, $02 \frac{M^3}{c} = 1$, $45 \cdot 10^3 \frac{M^3}{cym}$;
- б) совершенный газ: $Q_m = 186,68 \frac{\kappa z}{c} = 1,61 \cdot 10^4 \frac{m}{cym}$.

Построили графики распределения давления P(x) для несжимаемой жидкости и совершенного газа. Графики представлены на рисунках 3 и 4.

Задача 4

При прямолинейно-параллельной фильтрации давление на контуре питания РК, давление на галерее Рг. Пласт состоит из трех зон с одинаковой проницаемостью в каждом k_i ($k_1 = k$, $k_2 = 2k$, $k_3 = 1,5k$) длина зон L_i ($L_1 = 0,3L$, $L_2 = 0,4L$, $L_3 = 0,3L$). Определить дебит и средний коэффициент проницаемости пласта дренажной галереи шириной В. Построить график распределения давления P(x). Вязкость жидкости μ , мощность пласта h, расстояние от контура питания до галереи L. Движение жидкости напорное, подчиняется закону Дарси.

- 1) несжимаемой жидкости.
- 2) совершенного газа.

Исходные данные:

Схема дренажной галереи представлена на рисунке 1. Вертикальное сечение и линия распределения давления в пласте представлено на рисунке 2.

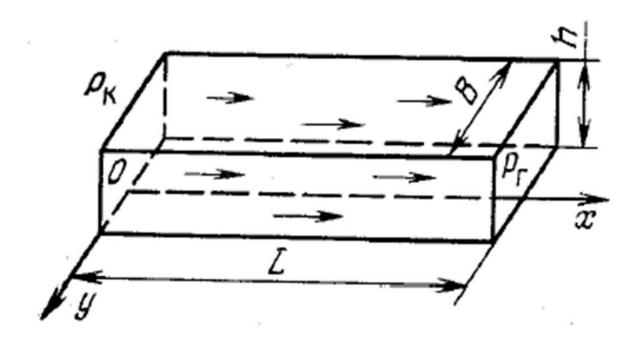


Рисунок 1 – Схема дренажной галереи

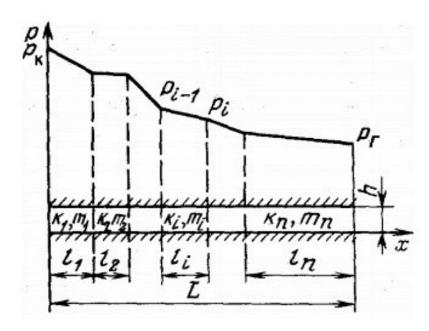


Рисунок 2 - Прямолинейно-параллельный поток в зонально-неоднородном пласте (показана кривая P(x) для жидкости)

$$P_{amm} = 0.1013 \cdot 10^6 \, \Pi a$$
;

$$B = 100 \,\text{M}$$
;

Здесь и далее N-номер варианта.

$$h = \left| 10 + (-1)^N \cdot \frac{N}{10} \right| = \left| 10 + (-1)^4 \cdot \frac{4}{10} \right| = 10, 4 \text{ m};$$

$$L = |3000 + (-1)^N \cdot 40 \cdot N| = |3000 + (-1)^4 \cdot 40 \cdot 4| = 3160 \,\mathrm{m}$$
;

$$P_{k} = \left[20 + (-1)^{N} \cdot \frac{N}{10}\right] \cdot 10^{6} = \left[20 + (-1)^{4} \cdot \frac{4}{10}\right] \cdot 10^{6} = 2,04 \cdot 10^{7} \, \Pi a;$$

$$P_{e} = \left| \left[2 + (-1)^{N} \cdot \frac{N}{50} \right] \cdot 10^{6} \right| = \left| \left[2 + (-1)^{4} \cdot \frac{4}{50} \right] \cdot 10^{6} \right| = 2,08 \cdot 10^{6} \, \Pi a;$$

$$k = \left[2 + (-1)^{N} \cdot \frac{N}{50} \right] \cdot 10^{-12} = \left[2 + (-1)^{4} \cdot \frac{4}{50} \right] \cdot 10^{-12} = 2,08 \cdot 10^{-12} \, \text{m}^{2}.$$

Для несжимаемой жидкости:

$$\rho_{\rm inc} \! = \! 800 \! + \! (-1)^{\rm N} \cdot N \! = \! 800 \! + \! (-1)^{\rm 4} \cdot 4 \! = \! 804 \frac{\kappa z}{{\rm M}^3} \, ;$$

$$\mu_{\infty} = \left(1 + \frac{N}{25}\right) \cdot 10^{-3} = \left(1 + \frac{4}{25}\right) \cdot 10^{-3} = 1, 16 \cdot 10^{-3} \, \Pi a \cdot c.$$

Для совершенного газа:

$$\rho_{amm} = 1 + (-1)^N \cdot \frac{N}{1000} = 1 + (-1)^4 \cdot \frac{4}{1000} = 1,004 \frac{\kappa z}{M^3};$$

$$\mu_{e} = \left(1 + \frac{N}{25}\right) \cdot 10^{-5} = \left(1 + \frac{4}{25}\right) \cdot 10^{-5} = 1, 16 \cdot 10^{-5} \, \Pi a \cdot c.$$

$$k_1 = k = 2,08 \cdot 10^{-12} \text{ m}^2$$
;

$$k_2 = 2 \cdot k = 2 \cdot 2$$
, $08 \cdot 10^{-12} = 4$, $16 \cdot 10^{-12} \, \text{m}^2$;

$$k_3 = 1, 5 \cdot k = 1, 5 \cdot 2, 08 \cdot 10^{-12} = 3, 12 \cdot 10^{-12} \text{ m}^2$$
;

$$L_1 = 0, 3 \cdot L = 0, 3 \cdot 3160 = 948 M.$$

$$L_2 = 0$$
, $4 \cdot L = 0$, $4 \cdot 3160 = 1264 M$;

$$L_3 = 0, 3 \cdot L = 0, 3 \cdot 3160 = 948 \text{ m}.$$

Определить: $Q_{\scriptscriptstyle H}$, $Q_{\scriptscriptstyle \mathcal{E}}$, $k_{\scriptscriptstyle \it cp}$.

Решение:

а) несжимаемая жидкость

1 30Ha:
$$0 \le x \le L_1 = 0 \le x < 948$$

$$P(x) = P_k - \frac{P_k - P_z}{L_1} \cdot X$$

$$Q_1 = \frac{B \cdot h \cdot k_1}{\mu} \cdot \left(\frac{P_k - P_1}{L_1} \right);$$

2 30Ha:
$$L_1 \le x \le L_1 + L_2 = 948 \le x < 2212$$

$$P(x) = P_1 - \frac{P_1 - P_2}{L_2} \cdot (X - L_1)$$

$$Q_2 = \frac{B \cdot h \cdot k_2}{\mu} \cdot \left(\frac{P_1 - P_2}{L_2} \right);$$

3 30Ha:
$$L_1 + L_2 \le x \le L_1 + L_2 + L_3 = 2212 \le x \le 3160$$

$$P(x) = P_2 - \frac{P_2 - P_c}{L_3} \cdot (X - L_1 - L_2)$$

$$Q_3 = \frac{B \cdot h \cdot k_3}{\mu} \cdot \left(\frac{P_2 - P_e}{L_3} \right);$$

$$\begin{split} \mathcal{Q} &= \mathcal{Q}_1 + \mathcal{Q}_2 + \mathcal{Q}_3 = \frac{B \cdot h \cdot \left(P_k - P_1 + P_1 - P_2 + P_2 - P_z\right)}{\mu \cdot \left(\frac{L_1}{k_1} + \frac{L_2}{k_2} + \frac{L_3}{k_3}\right)} = \frac{B \cdot h \cdot \left(P_k - P_z\right)}{\mu \cdot \left(\frac{L_1}{k_1} + \frac{L_2}{k_2} + \frac{L_3}{k_3}\right)} = \mathcal{U} \\ & \mathcal{U} \cdot \frac{B \cdot h \cdot k_{cp}}{\mu} \cdot \left(\frac{P_k - P_z}{L}\right), \\ & \frac{1}{\left(\frac{L_1}{k_1} + \frac{L_2}{k_2} + \frac{L_3}{k_3}\right)} = \frac{k_{cp}}{L} \\ & k_{cp} = \frac{L}{\frac{L_1}{k_1} + \frac{L_2}{k_2} + \frac{L_3}{k_3}} = \frac{3160}{2,08 \cdot 10^{-12}} + \frac{3160}{4,16 \cdot 10^{-12}} + \frac{948}{3,12 \cdot 10^{-12}} = 2,97 \cdot 10^{-12} \, \text{M}^2, \\ & \mathcal{Q} = \frac{B \cdot h \cdot k_{cp}}{\mu_{\text{osc}}} \cdot \left(\frac{P_k - P_z}{L}\right), \end{split}$$

 $Q = \frac{100 \cdot 10, 4 \cdot 2, 97 \cdot 10^{-12}}{1, 16 \cdot 10^{-3}} \cdot \left(\frac{2, 04 \cdot 10^7 - 2, 08 \cdot 10^6}{3160} \right) = 0, 02 \frac{M^3}{C};$

$$\begin{split} Q_1 &= Q = \frac{B \cdot h \cdot k_1}{\mu_{\infty}} \cdot \left(\frac{P_k - P_1}{L_1} \right); \\ P_1 &= P_k - \frac{Q \cdot \mu_{\infty} \cdot L_1}{B \cdot h \cdot k_1} = 1,99 \cdot 10^7 - \frac{0,02 \cdot 1,16 \cdot 10^{-3} \cdot 948}{100 \cdot 9,9 \cdot 2,08 \cdot 10^{-12}} = 1,25 \cdot 10^7 \, \Pi a; \\ Q_2 &= Q = \frac{B \cdot h \cdot k_1}{\mu_{\infty}} \cdot \left(\frac{P_1 - P_2}{L_2} \right); \\ P_2 &= P_1 - \frac{Q \cdot \mu_{\infty} \cdot L_2}{B \cdot h \cdot k_2} = 1,22 \cdot 10^7 - \frac{0,02 \cdot 1,16 \cdot 10^{-3} \cdot 1184}{100 \cdot 10,4 \cdot 4,16 \cdot 10^{-12}} = 7,31 \cdot 10^6 \, \Pi a; \\ Q_3 &= Q = \frac{B \cdot h \cdot k_3}{\mu_{\infty}} \cdot \left(\frac{P_2 - P_2}{L_3} \right); \\ P_3 &= P_2 - \frac{Q \cdot \mu_{\infty} \cdot L_3}{B \cdot h \cdot k_3} = 7,1 \cdot 10^6 - \frac{0,02 \cdot 1,16 \cdot 10^{-3} \cdot 948}{100 \cdot 10,4 \cdot 3,12 \cdot 10^{-12}} = 2,08 \cdot 10^6 \, \Pi a; \end{split}$$

Таблица 1 - Значения давления жидкости в пласте

L, км	Р, МПа
0	20,40
0,948	12,55
2,212	7,31
3,16	2,08

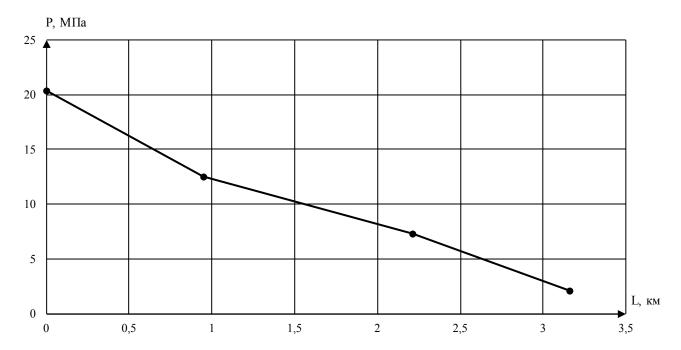


Рисунок 3 – График распределения давления Р(х) для несжимаемой жидкости

б) совершенный газ:

1 30Ha: $0 \le x \le L_1 = 0 \le x < 948$

$$P(x) = \sqrt{P_k - \frac{P_k - P_z}{L_1} \cdot X}$$

$$Q_{1} = \frac{\rho_{amm} \cdot B \cdot h \cdot k_{1}}{2 \cdot P_{amm} \cdot \mu} \cdot \left(\frac{P_{k}^{2} - P_{1}^{2}}{L_{1}} \right);$$

2 30Ha: $L_1 \le x \le L_1 + L_2 = 948 \le x < 2212$

$$P(x) = \sqrt{P_1^2 - \frac{P_1^2 - P_2^2}{L_2} \cdot (X - L_1)}$$

$$Q_{2} = \frac{\rho_{amm} \cdot B \cdot h \cdot k_{2}}{2 \cdot P_{amm} \cdot \mu} \cdot \left(\frac{P_{1}^{2} - P_{2}^{2}}{L_{2}} \right);$$

3 30Ha: $L_1 + L_2 \le x \le L_1 + L_2 + L_3 = 2212 \le x \le 3160$

$$\begin{split} P(x) &= \sqrt{P_{2}^{\ 2} - \frac{P_{2}^{\ 2} - P_{2}^{\ 2}}{L_{3}}} \cdot \left(X - L_{1} - L_{2}\right) \\ Q_{3} &= \frac{\rho_{amm} \cdot B \cdot h \cdot k_{3}}{2 \cdot P_{amm} \cdot \mu} \cdot \left(\frac{P_{2}^{\ 2} - P_{2}^{\ 2}}{L_{3}}\right); \\ Q &= Q_{1} + Q_{2} + Q_{3} = \frac{\rho_{amm} \cdot B \cdot h \cdot \left(P_{k}^{\ 2} - P_{1}^{\ 2} + P_{1}^{\ 2} - P_{2}^{\ 2} + P_{2}^{\ 2} - P_{2}^{\ 2}\right)}{2 \cdot P_{amm} \cdot \mu \cdot \left(\frac{L_{1}}{k_{1}} + \frac{L_{2}}{k_{2}} + \frac{L_{3}}{k_{3}}\right)} = \mathcal{U} \end{split}$$

$$\frac{\partial \frac{\rho_{amm} \cdot B \cdot h}{2 \cdot P_{amm} \cdot \mu} \cdot \left| \frac{P_k^2 - P_\epsilon^2}{\left(\frac{L_1}{k_1} + \frac{L_2}{k_2} + \frac{L_3}{k_3}\right)} \right| = \frac{\rho_{amm} \cdot B \cdot h \cdot k_{cp}}{2 \cdot P_{amm} \cdot \mu} \cdot \left(\frac{P_k^2 - P_\epsilon^2}{L}\right);$$

$$Q_{m} = \frac{\rho_{amm} \cdot B \cdot h \cdot k_{cp}}{2 \cdot P_{amm} \cdot \mu_{c}} \cdot \left(\frac{P_{k}^{2} - P_{c}^{2}}{L} \right);$$

$$Q_{m} = \frac{1,004 \cdot 100 \cdot 10, 4 \cdot 2,97 \cdot 10^{-12}}{2 \cdot 0,1013 \cdot 10^{6} \cdot 1,16 \cdot 10^{-5}} \cdot \left(\frac{\left(2,04 \cdot 10^{7}\right)^{2} - \left(2,08 \cdot 10^{6}\right)^{2}}{3160} \right) = 172,06 \frac{M^{3}}{c}.$$

Найдем P₁, P₂, P₃.

$$Q_{m1} = Q_{m} = \frac{\rho_{amm} \cdot B \cdot h \cdot k_{1}}{2 \cdot P_{amm} \cdot \mu_{c}} \cdot \left(\frac{P_{k}^{2} - P_{1}^{2}}{L_{1}} \right);$$

$$P_{1} = \sqrt{P_{k}^{2} - \frac{2 \cdot P_{amm} \cdot Q_{m} \cdot \mu_{z} \cdot L_{1}}{\rho_{amm} \cdot B \cdot h \cdot k_{1}}} = \mathcal{L}$$

$$\lambda\sqrt{(2,04\cdot10^7)^2 - \frac{2\cdot0,1013\cdot10^6\cdot172,06\cdot1,16\cdot10^{-5}\cdot948}{1,004\cdot100\cdot10,4\cdot2,08\cdot10^{-12}}} = 1,55\cdot10^7 \Pi a.$$

$$Q_{m2} = Q_{m} = \frac{\rho_{amm} \cdot B \cdot h \cdot k_{1}}{2 \cdot P_{amm} \cdot \mu_{2}} \cdot \left(\frac{P_{1}^{2} - P_{2}^{2}}{L_{2}} \right);$$

$$P_2 = \sqrt{P_1^2 - \frac{2 \cdot P_{amm} \cdot Q_m \cdot \mu_z \cdot L_2}{\rho_{amm} \cdot B \cdot h \cdot k_2}} = \mathcal{L}$$

$$\sqrt{(1,55\cdot10^7)^2 - \frac{2\cdot0,1013\cdot10^6\cdot172,06\cdot1,16\cdot10^{-5}\cdot1264}{1,004\cdot100\cdot10,4\cdot4,16\cdot10^{-12}}} = 1,1\cdot10^7 \Pi a.$$

$$Q_{m3} = Q_{m} = \frac{\rho_{amm} \cdot B \cdot h \cdot k_{3}}{2 \cdot P_{amm} \cdot \mu_{z}} \cdot \left(\frac{P_{2}^{2} - P_{3}^{2}}{L_{3}} \right);$$

$$P_3 = \sqrt{P_2^2 - \frac{2 \cdot P_{amm} \cdot Q_m \cdot \mu_z \cdot L_3}{\rho_{amm} \cdot B \cdot h \cdot k_3}} = \mathcal{L}$$

Таблица 3 - Значения давления газа в пласте

L, км	Р, МПа
0	20,40
0,948	15,48
2,212	11,05
3,16	2,08

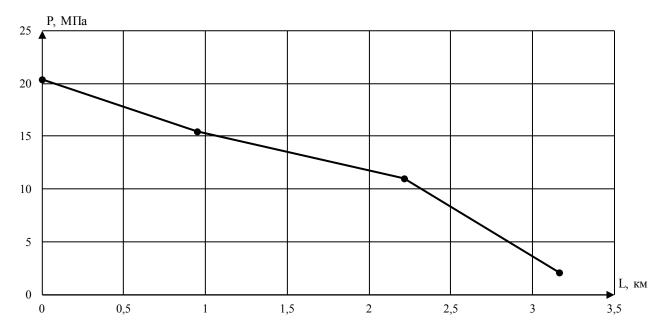


Рисунок 4 – График распределения давления Р(х) для совершенного газа

Вывод:

В данной работе мы рассмотрели прямолинейно-параллельную фильтрацию несжимаемой жидкости и совершенного газа. Определили дебит пласта дренажной галереи:

- а) несжимаемая жидкость: Q = 0, $02 \frac{M^3}{c} = 1$, $33 \cdot 10^3 \frac{M^3}{cym}$;
- б) совершенный газ: $Q_m = 172,06 \frac{\kappa z}{c} = 1,49 \cdot 10^4 \frac{m}{cym}$.

Определили средний коэффициент проницаемости пласта дренажной галереи: $k_{cp}\!=\!2,97\!\cdot\!10^{-12}\,\text{m^2}.$

Построили графики распределения давления P(x) для несжимаемой жидкости и совершенного газа. Графики представлены на рисунках 3 и 4.

Задача 5

В пласте происходит установившаяся плоско-радиальная фильтрация к скважине по закону Дарси. Пласт состоит из трех горизонтальных пропластков мощностью h_i ($h_1 = 0.3h$, $h_2 = 0.4h$, $h_3 = 0.3h$) и коэффициентами проницаемости k_i ($k_1 = k$, $k_2 = 2k$, $k_3 = 1.5k$). Определить дебит и средний коэффициент проницаемости пласта. Построить график распределения давления P(x). Вязкость жидкости μ , мощность пласта h, радиус скважины r_c , радиус контура питания R_k . Движение жидкости напорное, подчиняется закону Дарси.

- 1) несжимаемой жидкости.
- 2) совершенного газа.

Исходные данные:

Схема дренажной галереи представлена на рисунке 1. Вертикальное сечение и линия распределения давления в пласте представлено на рисунке 2.

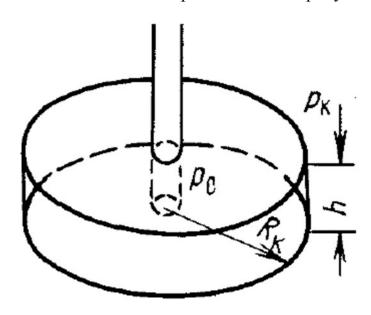


Рисунок 1 – Схема цилиндрического пласта

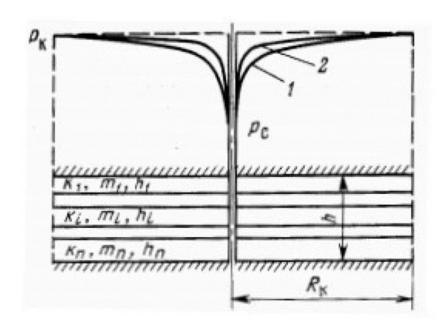


Рисунок 2 - Распределение давления для жидкости (1) и для газа (2) в плоскорадиальном потоке в слоисто-неоднородном пласте

$$P_{amm} = 0,1013 \cdot 10^6 \, \Pi a$$
;

Здесь и далее N-номер варианта.

$$\begin{split} h &= \left| 10 + (-1)^{N} \cdot \frac{N}{10} \right| = \left| 10 + (-1)^{4} \cdot \frac{4}{10} \right| = 10, 4 \, \text{m} \,; \\ R_{k} &= \left| 600 + (-1)^{N} \cdot 10 \cdot N \right| = \left| 600 + (-1)^{4} \cdot 10 \cdot 4 \right| = 640 \, \text{m} \,; \\ r_{c} &= 0, 1 + \frac{N}{100} = 0, 1 + \frac{4}{100} = 0, 14 \, \text{m} \,; \\ P_{c} &= \left[2 + (-1)^{N} \cdot \frac{N}{50} \right] \cdot 10^{6} = \left[2 + (-1)^{4} \cdot \frac{4}{50} \right] \cdot 10^{6} = 2, 08 \cdot 10^{6} \, \Pi a \,; \\ P_{k} &= \left[20 + (-1)^{N} \cdot \frac{N}{10} \right] \cdot 10^{6} = \left[20 + (-1)^{4} \cdot \frac{4}{10} \right] \cdot 10^{6} = 2, 04 \cdot 10^{7} \, \Pi a \,; \\ k &= \left| \left[2 + (-1)^{N} \cdot \frac{N}{50} \right] \cdot 10^{-12} \right| = \left| \left[2 + (-1)^{4} \cdot \frac{4}{50} \right] \cdot 10^{-12} \right| = 2, 08 \cdot 10^{-12} \, \text{m}^{2} \,. \end{split}$$

Для несжимаемой жидкости:

$$\begin{split} & \rho_{\text{\tiny MC}} \! = \! 800 \! + \! (-1)^{N} \cdot N \! = \! 800 \! + \! (-1)^{4} \cdot 4 \! = \! 804 \frac{\kappa z}{M^{3}}; \\ & \mu_{\text{\tiny MC}} \! = \! \left(1 \! + \! \frac{N}{25} \right) \cdot 10^{-3} \! = \! \left(1 \! + \! \frac{4}{25} \right) \cdot 10^{-3} \! = \! 1, 16 \cdot 10^{-3} \, \Pi a \cdot c \, . \end{split}$$

Для совершенного газа:

$$\begin{split} \rho_{amm} &= 1 + (-1)^N \cdot \frac{N}{1000} = 1 + (-1)^4 \cdot \frac{4}{1000} = 1,004 \frac{\kappa z}{M^3}; \\ \mu_z &= \left(1 + \frac{N}{25}\right) \cdot 10^{-5} = \left(1 + \frac{4}{25}\right) \cdot 10^{-5} = 1,16 \cdot 10^{-5} \, \Pi a \cdot c. \\ k_1 &= k = 2,08 \cdot 10^{-12} \, m^2; \\ k_2 &= 2 \cdot k = 2 \cdot 2,08 \cdot 10^{-12} = 4,16 \cdot 10^{-12} \, m^2; \\ k_3 &= 1,5 \cdot k = 1,5 \cdot 2,08 \cdot 10^{-12} = 3,12 \cdot 10^{-12} \, m^2; \\ k_1 &= 0,3 \cdot h = 0,3 \cdot 10,4 = 3,12 \, m. \\ k_2 &= 0,4 \cdot h = 0,4 \cdot 10,4 = 4,16 \, m; \end{split}$$

Определить: Q_{H} , Q_{ε} .

 $h_3 = 0$, $3 \cdot h = 0$, $3 \cdot 10$, 4 = 3, 12 M.

Решение:

Определим средний коэффициент проницаемости. Для горизонтальных пропластков формула имеет следующий вид:

$$\begin{aligned} k_{cp} &= \left[\sum_{i=1}^{3} h_{i} \cdot k_{i} \right] \div \left[\sum_{i=1}^{3} h_{i} \right]; \\ k_{cp} &= \frac{h_{1} \cdot k_{1} + h_{2} \cdot k_{2} + h_{3} \cdot k_{3}}{h_{1} + h_{2} + h_{3}}; \\ k_{cp} &= \frac{3, 12 \cdot 2, 08 \cdot 10^{-12} + 4, 16 \cdot 4, 16 \cdot 10^{-12} + 3, 12 \cdot 3, 12 \cdot 10^{-12}}{3, 12 + 4, 16 + 3, 12} = \mathcal{E} \\ \mathcal{E}_{3}, 22 \cdot 10^{-12} \, \mathcal{M}^{2}; \end{aligned}$$

Вычислим дебит скважины.

а) несжимаемая жидкость

Воспользуемся формулой Дюпюи.

$$h = h_1 + h_2 + h_3$$

$$Q_{n} = \frac{2 \cdot \pi \cdot h \cdot k_{cp} \cdot \left(P_{k} - P_{c}\right)}{\mu_{cc} \cdot \ln\left(\frac{R_{k}}{r_{c}}\right)}$$

$$Q_{H} = \frac{2 \cdot 3, 14 \cdot 10, 4 \cdot 3, 22 \cdot 10^{-12} \cdot (2, 04 \cdot 10^{7} - 2, 08 \cdot 10^{6})}{1, 16 \cdot 10^{-3} \cdot \ln\left(\frac{640}{0, 14}\right)} = 0, 39 \frac{M^{3}}{c};$$

Для построения графика зависимости давления от радиуса воспользуемся формулой:

$$P(r) = P_{k} - \frac{P_{k} - P_{c}}{\ln\left(\frac{R_{k}}{r_{c}}\right)} \cdot \ln\left(\frac{R_{k}}{r}\right) = 2,04 \cdot 10^{7} - \frac{\left(2,04 \cdot 10^{7} - 2,08 \cdot 10^{6}\right)}{\ln\left(\frac{640}{0,14}\right)} \cdot \ln\left(\frac{640}{r}\right);$$

Таблица 1 – Распределение давлений для несжимаемой жидкости

г, м	P(r), MПа	
0,14	2,08	
4,92	9,82	
12,31	11,81	
24,62	13,32	
64	15,39	
128	16,90	
192	17,78	
256	18,41	
320	18,89	
384	19,29	
448	19,62	
512	19,91	
576	20,17	
640	20,40	

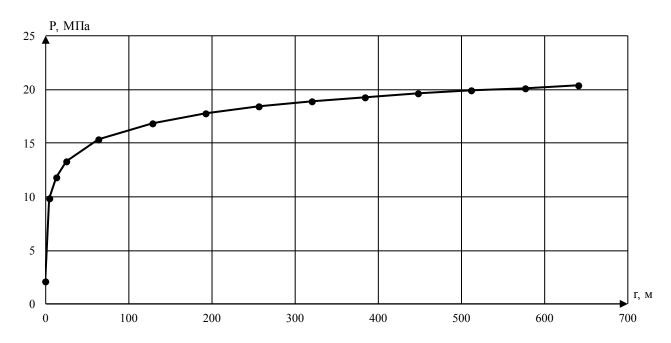


Рисунок 3 – График распределения давления Р(r) для несжимаемой жидкости

б) совершенный газ:

Вычислим расход совершенного газа при плоско-радиальной фильтрации используют по формуле:

$$h = h_1 + h_2 + h_3$$

$$Q_{\mathit{m}} = \frac{\pi \cdot h \cdot k_{\mathit{cp}} \cdot \rho_{\mathit{amm}} \cdot \left(P_{\mathit{k}}^{2} - P_{\mathit{c}}^{2}\right)}{\mu_{\mathit{c}} \cdot P_{\mathit{amm}} \cdot \ln\left(\frac{R_{\mathit{k}}}{r_{\mathit{c}}}\right)}$$

$$Q_{m} = \frac{3,14 \cdot 10,4 \cdot 3,22 \cdot 10^{-12} \cdot 1,004 \cdot \left[(2,04 \cdot 10^{7})^{2} - (2,08 \cdot 10^{6})^{2} \right]}{1,16 \cdot 10^{-5} \cdot 0,1013 \cdot 10^{6} \cdot \ln \left[\frac{640}{0,14} \right]} = \xi$$

$$\frac{64}{64}$$
, $4 \cdot 10^3 \frac{\kappa z}{c}$;

Для построения графика зависимости давления от радиуса воспользуемся формулой:

$$P(r) = \sqrt{P_k^2 - \frac{\left(P_k^2 - P_c^2\right)}{\ln\left(\frac{R_k}{r_c}\right)} \cdot \ln\left(\frac{R_k}{r}\right)} = i \cdot \frac{1}{\ln\left(\frac{R_k}{r_c}\right)}$$

$$\sqrt{ \left(2 , 04 \cdot 10^7 \right)^2 - \frac{ \left(\left(2 , 04 \cdot 10^7 \right)^2 - \left(2 , 08 \cdot 10^6 \right)^2 \right) }{ \ln \left(\frac{640}{0 , 14} \right)} \cdot \ln \left(\frac{640}{r} \right) }.$$

Таблица 2 - Распределение давлений для совершенного газа

r, m	P(r), MПа	
0,14	2,08	
4,92	13,35	
12,31	14,94	
24,62	16,03	
64	17,43	
128	18,37	
192	18,90	
256	19,27	
320	19,55	
384	19,78	
448	19,97	
512	20,13	
576	20,27	
640	20,40	

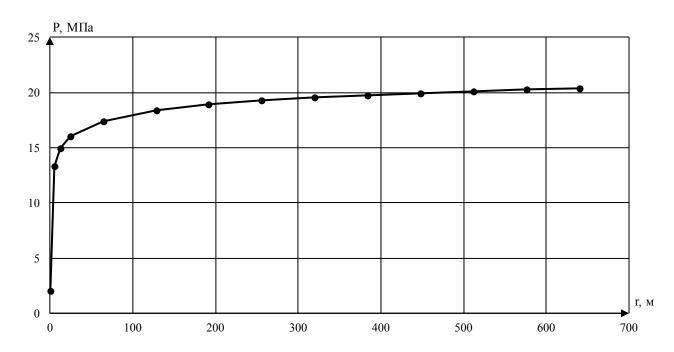


Рисунок 4 – График распределения давления Р(r) для совершенного газа

Вывод:

В данной работе мы рассмотрели плоско-радиальную фильтрацию несжимаемой жидкости и совершенного газа. Определили дебит пласта:

а) несжимаемая жидкость:
$$Q=0$$
, $39\frac{M^3}{c}=3$, $41\cdot 10^4\frac{M^3}{cym}$;

б) совершенный газ:
$$Q_m = 4, 4 \cdot 10^3 \frac{\kappa z}{c} = 3, 8 \cdot 10^5 \frac{m}{cym}$$
.

Определили средний коэффициент проницаемости пласта:

$$k_{cp} = 3,22 \cdot 10^{-12} M^2$$

Построили графики распределения давления P(r) для несжимаемой жидкости и совершенного газа. Графики представлены на рисунках 3 и 4.

Задача 6

В пласте происходит установившаяся плоско-радиальная фильтрация к скважине по закону Дарси. Пласт состоит из трех зон с одинаковой проницаемостью в каждом ($k_1 = k$, $k_2 = 2k$, $k_3 = 1,5k$) границы зон $R_1 = 0,3 \cdot R_k$, $R_2 = 0,7 \cdot R_k$. Определить дебит и средний коэффициент проницаемости пласта. Построить график распределения давления P(x). Вязкость жидкости μ , мощность пласта h, радиус скважины r_c , радиус контура питания R_k . Движение жидкости напорное, подчиняется закону Дарси.

- 1) несжимаемой жидкости.
- 2) совершенного газа.

Исходные данные:

Схема цилиндрического пласта представлена на рисунке 1. Распределение давления жидкости представлено на рисунке 2.



Рисунок 1 – Схема цилиндрического пласта

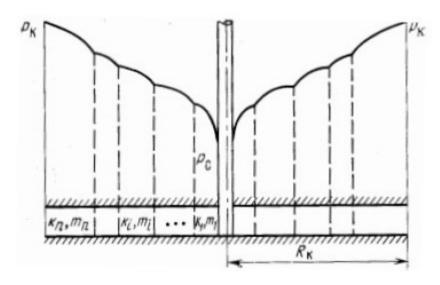


Рисунок 2 — Распределение давления для жидкости

$$P_{amm} = 0.1013 \cdot 10^6 \Pi a;$$

Здесь и далее N-номер варианта.

$$h = \left| 10 + (-1)^N \cdot \frac{N}{10} \right| = \left| 10 + (-1)^4 \cdot \frac{4}{10} \right| = 10$$
, $4 M$;

$$R_k = |600 + (-1)^N \cdot 10 \cdot N| = |600 + (-1)^4 \cdot 10 \cdot 4| = 640 \,\text{m}$$

$$r_c = 0, 1 + \frac{N}{100} = 0, 1 + \frac{4}{100} = 0, 14 \text{ m};$$

$$R_1 = 0, 3 \cdot R_k = 0, 3 \cdot 640 = 192 M$$
.

$$R_2 = 0$$
, $7 \cdot R_k = 0$, $4 \cdot 640 = 448 \,\text{M}$;

$$P_c = \left[2 + (-1)^N \cdot \frac{N}{50}\right] \cdot 10^6 = \left[2 + (-1)^4 \cdot \frac{4}{50}\right] \cdot 10^6 = 2,08 \cdot 10^6 \, \Pi a;$$

$$P_{k} = \left[20 + (-1)^{N} \cdot \frac{N}{10}\right] \cdot 10^{6} = \left[20 + (-1)^{4} \cdot \frac{4}{10}\right] \cdot 10^{6} = 2,04 \cdot 10^{7} \, \Pi a;$$

$$k = \left[2 + (-1)^N \cdot \frac{N}{50} \right] \cdot 10^{-12} = \left[2 + (-1)^4 \cdot \frac{4}{50} \right] \cdot 10^{-12} = 2,08 \cdot 10^{-12} \, \text{m}^2.$$

$$k_1 = k = 2$$
, $08 \cdot 10^{-12} M^2$;

$$k_2 = 2 \cdot k = 2 \cdot 2$$
, $08 \cdot 10^{-12} = 4$, $16 \cdot 10^{-12} \, \text{m}^2$;

$$k_3 = 1$$
, $5 \cdot k = 1$, $5 \cdot 2$, $08 \cdot 10^{-12} = 3$, $12 \cdot 10^{-12} \, \text{m}^2$;

Для несжимаемой жидкости:

$$\rho_{\text{\tiny 3KC}}\!=\!800\!+\!(-1)^{\!N}\!\cdot\!N\!=\!800\!+\!(-1)^{\!4}\!\cdot\!4\!=\!804\frac{\text{\tiny K2}}{\text{\tiny $M3};$$

$$\mu_{\text{MC}} = \left(1 + \frac{N}{25}\right) \cdot 10^{-3} = \left(1 + \frac{4}{25}\right) \cdot 10^{-3} = 1, 16 \cdot 10^{-3} \, \text{Ma} \cdot c.$$

Для совершенного газа:

$$\begin{split} \rho_{amm} &= 1 + (-1)^N \cdot \frac{N}{1000} = 1 + (-1)^4 \cdot \frac{4}{1000} = 1,004 \frac{\kappa z}{M^3}; \\ \mu_z &= \left(1 + \frac{N}{25}\right) \cdot 10^{-5} = \left(1 + \frac{4}{25}\right) \cdot 10^{-5} = 1,16 \cdot 10^{-5} \, \Pi a \cdot c \, . \end{split}$$

Определить: $Q_{\scriptscriptstyle H}$, $Q_{\scriptscriptstyle \mathcal{E}}$, $k_{\scriptscriptstyle \it cp}$.

Решение:

Определим средний коэффициент проницаемости. Для горизонтальных пропластков формула имеет следующий вид:

$$k_{cp} = \frac{\ln\left(\frac{R_k}{r_c}\right)}{\frac{1}{k_1} \cdot \ln\left(\frac{R_1}{r_c}\right) + \frac{1}{k_2} \cdot \ln\left(\frac{R_2}{R_1}\right) + \frac{1}{k_3} \cdot \ln\left(\frac{R_k}{R_2}\right)};$$

$$k_{cp} = \frac{\ln\left(\frac{640}{0,11}\right)}{\frac{1}{2,08 \cdot 10^{-12}} \cdot \ln\left(\frac{192}{0,14}\right) + \frac{1}{4,16 \cdot 10^{-12}} \cdot \ln\left(\frac{448}{192}\right) + \frac{1}{3,12 \cdot 10^{-12}} \cdot \ln\left(\frac{640}{448}\right)} = \lambda$$

$$\lambda 2, 22 \cdot 10^{-12} \, \text{m}^2;$$

Вычислим дебит скважины.

а) несжимаемая жидкость

Воспользуемся формулой Дюпюи.

$$Q_{H} = \frac{2 \cdot \pi \cdot h \cdot k_{cp} \cdot \left(P_{k} - P_{c}\right)}{\mu_{MC} \cdot \ln\left(\frac{R_{k}}{r_{c}}\right)}$$

Для отдельных участков пласта дебит будет рассчитываться по формулам:

$$Q_{1} = \frac{2 \cdot \pi \cdot h \cdot k_{1} \cdot (P_{1} - P_{c})}{\mu_{oc} \cdot \ln\left(\frac{R_{1}}{r_{c}}\right)}$$

$$Q_{2} = \frac{2 \cdot \pi \cdot h \cdot k_{2} \cdot \left(P_{2} - P_{1}\right)}{\mu_{\mathcal{M}} \cdot \ln\left(\frac{R_{2}}{R_{1}}\right)}$$

$$Q_{3} = \frac{2 \cdot \pi \cdot h \cdot k_{3} \cdot (P_{k} - P_{2})}{\mu_{sx} \cdot \ln \left(\frac{R_{k}}{R_{2}}\right)}$$

Ввиду непрерывности потока жидкости имеем:

$$\begin{split} Q_{\scriptscriptstyle H} &= Q_1 = Q_2 = Q_3 = \frac{2 \cdot \pi \cdot h \cdot k_{cp} \cdot \left(P_k - P_c\right)}{\mu_{\scriptscriptstyle \mathcal{M}} \cdot \ln \left(\frac{R_k}{r_c}\right)} \\ Q &= \frac{2 \cdot 3 \cdot 14 \cdot 10 \cdot 4 \cdot 2 \cdot 22 \cdot 10^{-12} \cdot \left(2 \cdot 04 \cdot 10^7 - 2 \cdot 08 \cdot 10^6\right)}{1 \cdot 16 \cdot 10^{-3} \cdot \ln \left(\frac{640}{0 \cdot 14}\right)} = 0 \cdot 27 \frac{M^3}{c} \,. \end{split}$$

Найдем давления на границах зон P_1 P_2 :

$$Q_{1} = Q = \frac{2 \cdot \pi \cdot h \cdot k_{1} \cdot (P_{1} - P_{c})}{\mu_{\infty} \cdot \ln\left(\frac{R_{1}}{r_{c}}\right)};$$

$$P_{1} = P_{c} + \frac{Q \cdot \mu_{\infty} \cdot \ln\left(\frac{R_{1}}{r_{c}}\right)}{2 \cdot \pi \cdot h \cdot k_{1}} = 2,08 \cdot 10^{6} + \frac{0,27 \cdot 1,16 \cdot 10^{-3} \cdot \ln\left(\frac{192}{0,14}\right)}{2 \cdot 3,14 \cdot 10,4 \cdot 2,08 \cdot 10^{-12}} = \mathcal{E}$$

 $61.89 \cdot 10^{7} \Pi a$.

$$Q_{2}=Q=\frac{2\cdot\pi\cdot h\cdot k_{2}\cdot \left(P_{2}-P_{1}\right)}{\mu_{\mathcal{M}}\cdot \ln \left(\frac{R_{2}}{R_{1}}\right)};$$

$$P_{2} = P_{1} + \frac{Q \cdot \mu_{\infty} \cdot \ln\left(\frac{R_{2}}{R_{1}}\right)}{2 \cdot \pi \cdot h \cdot k_{2}} = 1,89 \cdot 10^{7} + \frac{0,27 \cdot 1,16 \cdot 10^{-3} \cdot \ln\left(\frac{448}{192}\right)}{2 \cdot 3,14 \cdot 10,4 \cdot 4,16 \cdot 10^{-12}} = 2$$

 $\stackrel{\bullet}{\iota} 1,98 \cdot 10^7 \Pi a.$

Для построения графика зависимости давления от радиуса воспользуемся формулой:

Для построения графика зависимости давления от радиуса воспользуемся формулой:

$$P(r) = P_k - \frac{P_k - P_c}{\ln\left(\frac{R_k}{r_c}\right)} \cdot \ln\left(\frac{R_k}{r}\right)$$

Рассчитаем давления для каждой зоны:

1 зона: $r_c \le r < R_1 = 0$, $14 \le r < 192 м$;

$$P(r) = P_{1} - \frac{P_{1} - P_{c}}{\ln\left(\frac{R_{1}}{r_{c}}\right)} \cdot \ln\left(\frac{R_{1}}{r}\right) = 1,89 \cdot 10^{7} - \frac{1,89 \cdot 10^{7} - 2,08 \cdot 10^{6}}{\ln\left(\frac{192}{0,14}\right)} \cdot \ln\left(\frac{192}{r}\right);$$

2 30Ha: $R_1 \le r < R_2 = 192 \le r < 448 \,\text{M}$;

$$P(r) = P_2 - \frac{P_2 - P_1}{\ln\left(\frac{R_2}{R_1}\right)} \cdot \ln\left(\frac{R_2}{r}\right) = 1,98 \cdot 10^7 - \frac{1,98 \cdot 10^7 - 1,89 \cdot 10^7}{\ln\left(\frac{448}{192}\right)} \cdot \ln\left(\frac{448}{r}\right);$$

3 30Ha: $R_2 \le r \le R_k = 448 \le r \le 640 \,\text{M}$;

$$P(r) = P_k - \frac{P_k - P_2}{\ln\left(\frac{R_k}{R_2}\right)} \cdot \ln\left(\frac{R_k}{r}\right) = 2,04 \cdot 10^7 - \frac{2,04 \cdot 10^7 - 1,98 \cdot 10^7}{\ln\left(\frac{640}{448}\right)} \cdot \ln\left(\frac{640}{r}\right).$$

Таблица 1 – Распределение давлений для несжимаемой жидкости

r, M	P(r), MПа	г, м	P(r), MПа
0,14	2,08	243,2	19,14
9,6	11,90	294,4	19,36
12,8	12,57	345,6	19,55
19,2	13,51	396,8	19,71
24,6	14,09	448	19,85
32	14,70	486,4	19,97
48	15,64	524,8	20,09
96	17,25	563,2	20,20
144	18,19	601,6	20,30
192	18,86	640	20,40

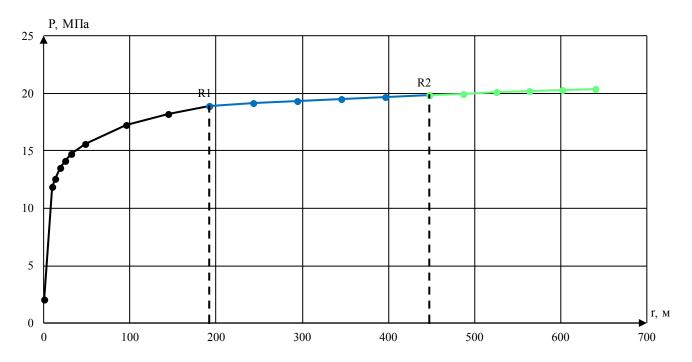


Рисунок 3 – График распределения давления Р(х) для несжимаемой жидкости

б) совершенный газ:

Вычислим расход совершенного газа при плоско-радиальной фильтрации используют по формуле:

$$Q_{m} = \frac{\pi \cdot h \cdot k \cdot \rho_{amm} \cdot \left(P_{k}^{2} - P_{c}^{2}\right)}{\mu_{z} \cdot P_{amm} \cdot \ln\left(\frac{R_{k}}{r_{c}}\right)}$$

Для отдельных участков пласта дебит будет рассчитываться по формулам:

$$Q_{m1} = \frac{\rho_{amm} \cdot \pi \cdot h \cdot k_1 \cdot \left(P_1^2 - P_c^2\right)}{P_{amm} \cdot \mu_{sc} \cdot \ln\left(\frac{R_1}{r_c}\right)}$$

$$Q_{m2} = \frac{\rho_{amm} \cdot \pi \cdot h \cdot k_2 \cdot \left(P_2^2 - P_1^2\right)}{P_{amm} \cdot \mu_{m} \cdot \ln\left(\frac{R_2}{R_1}\right)}$$

$$Q_{m3} = \frac{\rho_{amm} \cdot \pi \cdot h \cdot k_3 \cdot \left(P_k^2 - P_2^2\right)}{P_{amm} \cdot \mu_{sm} \cdot \ln\left(\frac{R_k}{R_2}\right)}$$

Ввиду непрерывности потока жидкости имеем:

$$Q_{m} = Q_{m1} = Q_{m2} = Q_{m3} = \frac{\rho_{amm} \cdot \pi \cdot h \cdot k_{cp} \cdot \left(P_{k}^{2} - P_{c}^{2}\right)}{P_{amm} \cdot \mu_{c} \cdot \ln\left(\frac{R_{k}}{r_{c}}\right)}$$

$$1.004 \cdot 3.14 \cdot 10.4 \cdot 2.22 \cdot 10^{-12} \cdot \left[\left(2.04 \cdot 10^{7}\right)^{2} - \frac{1}{2}\right] \cdot \left[\left(2.04$$

$$Q_{m} = \frac{1,004 \cdot 3,14 \cdot 10,4 \cdot 2,22 \cdot 10^{-12} \cdot \left(\left[2,04 \cdot 10^{7}\right]^{2} - \left[2,08 \cdot 10^{6}\right]^{2}\right)}{0,1013 \cdot 10^{6} \cdot 1,16 \cdot 10^{-5} \cdot \ln\left(\frac{640}{0,14}\right)} = \xi$$

$$63,03\cdot10^3\frac{\kappa z}{c}$$
.

Для построения графика зависимости давления от радиуса воспользуемся формулой:

$$P(r) = \sqrt{P_k^2 - \frac{P_k^2 - P_c^2}{\ln\left(\frac{R_k}{r_c}\right)} \cdot \ln\left(\frac{R_k}{r}\right)}$$

Рассчитаем давления для каждой зоны:

1 зона:
$$r_c \le r < R_1 = 0$$
, $14 \le r < 192 м$;

$$P(r) = \sqrt{P_{1}^{2} - \frac{P_{1}^{2} - P_{c}^{2}}{\ln\left(\frac{R_{1}}{r_{c}}\right)} \cdot \ln\left(\frac{R_{1}}{r}\right)} = \delta$$

$$\sqrt{\left(1,89\cdot10^{7}\right)^{2} - \frac{\left(1,89\cdot10^{7}\right)^{2} - \left(2,08\cdot10^{6}\right)^{2}}{\ln\left(\frac{192}{0,14}\right)}} \cdot \ln\left(\frac{192}{r}\right);$$

2 30Ha:
$$R_1 \le r < R_2 = 192 \le r < 448 \,\text{m}$$
;

$$P(r) = \sqrt{P_{2}^{2} - \frac{P_{2}^{2} - P_{1}^{2}}{\ln\left(\frac{R_{2}}{R_{1}}\right)} \cdot \ln\left(\frac{R_{2}}{r}\right)} = \delta$$

$$\sqrt{ \left(1,98 \cdot 10^7 \right)^2 - \frac{ \left(1,98 \cdot 10^7 \right)^2 - \left(1,89 \cdot 10^7 \right)^2}{ \ln \left(\frac{448}{177} \right)} \cdot \ln \left(\frac{448}{r} \right) };$$

3 зона:
$$R_2 \le r \le R_k = 448 \le r \le 640 \,\text{м}$$
;

$$P(r) = \sqrt{{P_{k}}^{2} - \frac{{P_{k}}^{2} - {P_{2}}^{2}}{\ln\left(\frac{R_{k}}{R_{2}}\right)}} \cdot \ln\left(\frac{R_{k}}{r}\right) = \dot{\omega}$$

$$\sqrt{ \left(2,04 \cdot 10^7 \right)^2 - \frac{ \left(2,04 \cdot 10^7 \right)^2 - \left(1,98 \cdot 10^7 \right)^2 }{ \ln \left(\frac{640}{448} \right)} \cdot \ln \left(\frac{640}{r} \right) } .$$

Таблица 2 - Распределение давлений для совершенного газа

r, M	P(r), MПа	r, M	P(r), MПа
0,14	2,08	243,2	19,14
9,6	14,49	294,4	19,37
12,8	14,97	345,6	19,55
19,2	15,61	396,8	19,71
24,6	16,00	448	19,85
32	16,39	486,4	19,98
48	16,98	524,8	20,09
96	17,95	563,2	20,20
144	18,49	601,6	20,31
192	18,86	640	20,40

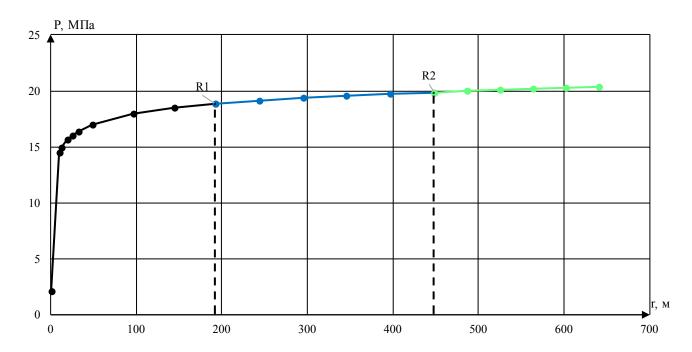


Рисунок 4 – График распределения давления P(r) для совершенного газа

Вывод:

В данной работе мы рассмотрели плоско-радиальную фильтрацию несжимаемой жидкости и совершенного газа. Определили дебит пласта:

а) несжимаемая жидкость:
$$Q=0$$
 , $27\frac{M^3}{c}=2$, $35\cdot 10^4\frac{M^3}{cym}$;

б) совершенный газ:
$$Q_m = 3$$
, $03 \cdot 10^3 \frac{\kappa 2}{c} = 2$, $62 \cdot 10^5 \frac{m}{cym}$.

Определили средний коэффициент проницаемости пласта:

$$k_{cp} = 2,22 \cdot 10^{-12} \,\mathrm{m}^2$$

Построили графики распределения давления P(r) для несжимаемой жидкости и совершенного газа. Графики представлены на рисунках 3 и 4.